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This paper reports the success of the preconditioned biconjugate 
gradient (PBCG) and the conjugate gradient square (CGS) algorithms 
in solving the matrix equations resulting from the discretization of 
systems of population rate equations which arise in nonequilibrium 
kinetics modeling. The success of the PBCG and CGS can be attributed 
to two main ideas: First, the singularity of the rate matrix resulting from 
population conservation requirement was removed through a reduction 
of matrix order so as to improve the condition number of the matrix. 
Second, an efficient preconditioner was found to reduce the reduce the 
eigenvalue spread of the rate matrix. The preconditioning matrix was 
selected on the basis of retaining the largest few rates in each column 
of the well conditioned rate matrix. This preconditioner, along with the 
reduced rate matrix, enabled the algorithms to converge very rapidly so 
as to make them an attractive alternative to standard direct methods. 
% 1992 Academic Press, Inc 

1. INTRODUCTION 

The subject of interest here is the solution of the ODE 
system 

$R .“, (1) 

where u is a column vector of length N and R is a rate 
matrix. A solution to this rate equation is required in many 
nonlocal thermal equilibria (NLTE) problems. In a typical 
NLTE application, the matrix R is composed of the detailed 
rates at which particles enter and leave a particular quan- 
tum state and the elements of the vector u, ui, represent the 
population density of state i. 

Although R can be quite dense and randomly structured, 
it has an important property that holds true in many physi- 
cal systems; namely, it conserves particle number. Conser- 
vation of particles means that Cr= i ui = N,, where N, is the 
total number of particles at t = 0. It is simple to show that 
this condition implies the following important relation: 

N 
,Fl R,=O, (2) 

An analytical solution of (1) is often intractable, par- 
ticularly if R is nonlinear. In order to solve (1) one can 
either use an ODE package (for example, the GEAR 
package), or else for certain applications (such as reactive 
flow or transient line transfer problems) one might linearize 
R about u and solve the resulting linear problem with 
a simple one-step difference equation. For example, if 
a modified backward Euler differencing were used, the 
resulting linear system to be solved would be given by 

(I-dtR,).u,+,=u,. (3) 

The subscript n denotes the timestep (u, = u( t,)). The quan- 
tity d t is t, + i - t, and the matrix I is the identity matrix. If 
the matrix R is nonlinear, then the use of R, in (3) is perhaps 
the most convenient one, although clearly not the most 
accurate one. 

Since R is in general time-dependent, one is faced with the 
task of solving the matrix equation (3) at every time step. 
This is a very significant computational task, particularly 
since the dimension of the matrix R can be very large 
(N- 1000). As an example, if one were to solve (3) using 
Gaussian elimination, roughly 3 x 10’ multiplication and 
addition operations would be needed if R were full (an 
operation count of roughly flv3/3 nonzero additions and 
multiplications occurs for these matrices with fill fact0r.f). 
In addition to the large computational expense, Gaussian 
elimination also presents serious storage problems. In typi- 
cal NLTE applications, R is somewhat sparse (f = l-20 % ). 
However, the LU decomposition of I - At A results in L 
and U matrices which are not sparse and require the storage 
of a full matrix. In many large vector processors, storage is 
an important issue, thereby making Gaussian elimination 
an unattractive prospect. 

An alternative to solution by Gaussian elimination is to 
adopt some type of iterative method. Iterative methods are 
typically memory-efficient and may require in addition 
fewer cycles. Conjugate gradient (CG) methods have 
become important in many applications recently, although 
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to our knowledge such methods have not previously been slower convergence rates. The spectral condition number 
successfully applied to the linear system of interest here. If a measures this spread and is defined to be 
class of efficient iterative methods could be developed for 
NLTE problems, then they would present a very attractive 
alternative to Gaussian elimination. In this paper we V(A)= (IA((2 ,,A-‘12=F, 

m1n 
present one such iterative method that “beats” Gaussian 
elimination. In particular, the preconditioned biconjugate 
gradient (PBCG) algorithm is shown to be a much faster 
and more efficient alternative to Gaussian elimination in 
inverting the large matrices that arise in NLTE modelling. 

This paper is organized in the following manner. First, 
the issues relevant to the CG method is briefly reviewed in 
the context of the present application. This leads to a discus- 
sion of the origin and consequences of numerical ill-condi- 
tioning as it pertains to the solution of rate equations; 
following which, a simple method is presented to avoid 
ill-conditioned systems. Once these important issues 
relating to the CG method have been resolved, the results 
of the present effort, in particular the PBCG and PCGS 
algorithms, are discussed. 

where urnax and rrmin are the largest and smallest singular 
values of the matrix. The largest and smallest singular 
values correspond to the largest and smallest nonzero eigen- 
values of the matrix. Since microscopic processes occur at 
widely ranging time scales, rate matrices with large condi- 
tion numbers are very common. In typical NLTE problems, 
%(A) can be as high as 10”. For matrices with such a broad 
eigenvalue spectrum, the standard CG-type algorithms fail. 

However, the above problems are not insurmountable. 
For example, condition number can be reduced by pre- 
conditioning A [6]. This involves the selection of a matrix 
Q such that 

Q-‘-ANNI, 

2. CONJUGATE GRADIENT METHODS where Q is chosen so that its inverse is easily computable. 

During the last decade, the preconditioned conjugate 
This Q is then used to solve the preconditioned system 

gradient algorithm or variants thereof have become favored 
iterative methods to solve large sparse linear systems of the 

Q-‘.A.x=Q--‘.b. (7) 

form 

A.x=b. 

In the present application, A is defined to be 

This method is essentially what we have used for the NLTE 
(4) problem. 

An alternate route to developing an iterative method is 
to symmetrize the initial linear system (4), and then to 
precondition (or precondition and then symmetrize) as 

AEI--dtR. (5) (8) 

Although in the strict sense the CG method is a direct where AT . A is now a symmetric matrix. This approach 
method, it has become referred to as an iterative involves squaring the condition number of the matrix; as a 
method [ 1, 31. result, it is more difficult to precondition. 

CG-type methods hitherto have not been used for the pre- 
sent application. There are difficulties associated with the 
application of conjugate gradient methods to systems which 3. FINITE DIFFERENCING 

are both nonsymmetric and which have a large condition ILL-CONDITIONED SYSTEMS 

number. For example, the CG method and the biconjugate 
gradient method can be viewed as a algorithms which 

3.1. Condition Numbers 

construct a polynomial lit to the inverse of the eigenvalue In many NLTE applications (e.g. stellar plasmas), the 
spectrum [4, 51: time evolution of the population vector is not of primary 

interest; instead, the desired information in many of these 

i= i fk(12ilk. (6) 
applications is the steady state distribution. For these 

1 k=l 
applications, it would be very useful to set At = co in (3) and 
solve directly for the steady state. 

Unfortunately, this is very difficult if the system is 
A large spread in the eigenvalue spectrum correspondingly differenced as (3). The reason is rooted in the singularity 
requires many terms in the polynomial expansion; hence, of the rate matrix A. The rate matrix is always singular if it 
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conserves population. This can easily be seen in (2) which 
makes one of the N rows dependent on the remaining N - 1 
rows. As a result of this singularity, CG methods cannot 
converge effectively. But it is important to realize that this 
singularity has a physical interpretation. The eigenvector 
corresponding to the zero eigenvalue corresponds to the 
steady state solution when 8 u/at = 0, u # 0. 

It may by argued, however, that even though R is 
singular, A, as a result of the identity matrix, is not singular. 
This is indeed true, but it is shown that the loss of 
singularity is due to the numerics. As a consequence, it is 
shown that the condition number is highly dependent on the 
parameters of the numerical scheme. In particular, it is seen 
that the matrix system (3) is singular if At = x. This 
behavior is clearly undesirable, since it implies that steady 
state solutions are not easily computable with the same dif- 
ferencing scheme. In the subsequent discussion we use the 
term singular value and eigenvalue interchangably since the 
matrix corresponding to the finite differenced system is no 
longer singular; hence, the singular value is simply the 
square root of the magnitude of the eigenvalue. 

It should be noted that the above problems are not 
unique to the differencing scheme in (3). A standard practice 
by which the singularity is removed is to replace the last row 
by a conservation vector. Pictorially, this matrix looks like 

B= 

1 -At R,,, -At R,., ..’ ... 

-At R,,, 1 -AtRz.l ... .,. 

(9) 

Although A and B appear to be very different from each 
another, they nevertheless have very similar eigenvalue 
spectrums. The eigenvalue spectrum of A is related to 
the eigenvalue spectrum of R by the simple relation 
2, = 1 - ,u~ At, where ,u;s are the eigenvalues of R. Since 
coin = 0 for R, the condition number for A is simply 

%?(A) = 1 - ~rnax At 
1 -Prnin At 

= 1 - pmax At, (10) 

where all eigenvalues pi have a negative real parts. This con- 
dition number has a disagreeable behaviour in the limit of 
large time steps; as At -+ co, Q?(A) --) co. In this sense, A is 
ill-conditioned. 

The exact eigenvalue spectrum of B is quite difficult to 
calculate. Intuitively, it would seem that there should be 
some relationship between the eigenvalue spectrum of B and 

A. To understand this, several matrices of the form of A anti 

B were generated and their respective condition number\ 
were examined. It was found that the condition numbers 
were virtually identical in the limit of large time steps, One 
possible reason for this behaviour is the following. ,45 
At + X, the coupling between the top rows and the bottom 
row becomes very small. In the limit of total decoupling. 
only the diagonal element is important; hence. the lowest 
eigenvalue is i.,,,(B) = 1. Similarly, the largest eigenvalucs 
do not change appreciably from A. The physical process 
responsible for the large eigenvalues (for typical non-LTE 
plasmas) are collisions. Since, these processes are relatively 
insensitive to the changes to any single quantum state, the 
perturbation of the one the states (e.g. in (9), the lowest 
row) should not really affect these large eigenvalues. So 
based on these arguments, in the limit At + Y-, it can be 
seen that %(B)*%(A). 

In the limit that At becomes very large, the condition 
number of A and B approaches - klrnaX At, which is linearly 
divergent in At. If the lowest eigenvalue i,,, (which 
corresponds to the steady state solution) could be removed 
in some way, then the resulting system would have a condi- 
tion number 

Cg(A’) v.., !!!!% 
fl’ 

(11) 
m,n 

in the limit of large At, where A’ is the matrix corresponding 
to the modified system where %mln has been removed. The 
eigenvalue /4&in is the eigenvalue with the smallest 
magnitude of R other than the zero eigenvalue corre- 
sponding to the steady state solution. 

This condition number (@?(A’)) is due to the detailed 
physics and atomic rates which occur in the problem, and is 
not related to either the time step or differencing scheme. It 
is, in a sense, a “physical” condition number for the system. 
Although condition numbers smaller than this may occur, it 
can be hoped that a numerical scheme can be devised that 
would do no worse than this under any circumstances (the 
schemes described in this section can have condition 
numbers which are arbitrarily large). In the next section 
we discuss a scheme involving a minor modification to (3 ) 
which has this desirable property. 

We may summarize the discussion of the section as 
follows: The matrix R is singular and the zero eigen- 
value corresponds to the steady state solutions of the 
system. Although the numerical scheme (3) removes this 
singularity, the condition number of the discretized system 
is still much larger than the physical condition number. 
Although the ill-conditioning is not a serious issue for direct 
inversion, it becomes a serious issue for iterative methods 
since the convergence properties are directly related to the 
condition number. 
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3.2. Reduction of Dimension 

From the previous section, it is clear that the goal is to 
somehow eliminate &,,,, = 1 eigenvalue. This can be accom- 
plished by taking advantage of conservation. Since the 
system is conservative, only N- 1 equations need to be 
solved explicitly at the n + 1 th timestep. The population of 
the Nth level can be determined through 

N-l 

U N=No- 1 u,. (12) 
,=I 

The use of backward Euler differencing on the rate equa- 
tions for the other N - 1 levels leads to a set of linear equa- 
tions with an associated matrix that is well conditioned for 
large time steps. 

The differential equation describing the level population 
of state i can be written 

2zjtl ROU~=~~’ Rqui+RiNuN. (13) 
/=I 

This population of level N can be eliminated by using the 
conservation condition to yield 

~=N&Ri,-RiJuj+R;NNO. (14) 
j=l 

This implies the system of rate equations 

au 
-=R’.u+f, at 

where R’ is a nonsingular (N - 1) x (N - 1) matrix. The 
elements of R’ and f are Rb = R,- RiN and fi = R,No, 
respectively. Since the matrix R’ is nonsingular, the steady 
state population can be found by solving R’ . u = - f. 

Finite differencing (15) yields the linear system 

(I-dtR;).u,+,=u,+dtf,. (16) 

This equation resembles (3); however, the matrix 

A’=T-AtR’ (17) 

has a reduced condition number 

%?(A’) = 1 -At ~max 
1 -At ~L6in (18) 

following the discussion of the last section. In the best case 
(At =O), %(A’) = 1 and in the worst case (At = a), 
@(A’) = ~~rnaxl~rmn~ One cannot do better than this because 

the condition number cannot be made smaller (without 
preconditiong) than the spread in eigenvalues due to the 
physical processes. 

In this sense, the task has been accomplished; by reducing 
the dimension of A and solving the A’ system, the condition 
number remains finite in the large At limit. For situations 
where I At pmln I is less than unity little improvement is 
expected. For lAt ~L,in 1 larger than unity, the reduced 
system can have a substantially smaller condition number. 

The method described in this section has the additional 
feature that it is algebraically conservative. Gaussian 
elimination of the system (3) is known to lead to moderate 
to large errors in total population, and the usual practice in 
NLTE calculations is to replace one of the rate equations by 
the conservation condition as described in the previous 
section. This modified system gives dramatic improvement 
in the conservation of population, as is also well known. 
The reduced system discussed in this section is operationally 
equivalent in that conservation is guaranteed algebraically 
on each timestep. 

4. PRECONDITIONING 

Although A’ is not singular for large At, the condition 
number can be nevertheless be quite large. Under these con- 
ditions, it is necessary to precondition A’ in order for a con- 
jugate gradient method to be effective. To simplify notation, 
the prime on A’ is dropped for the remainder of the paper. 

As mentioned before, preconditioning involves the 
determination of an easily invertible matrix Q, where 
%( Q - ‘A) < %‘(A). One class of Q’s that are easily invertible 
are those that are of the form Q = LU, where L and U 
are the lower diagonal and upper diagonal matrices, 
respectively. A simple way to generate L and U is to use the 
incomplete Crout decomposition (ICD) [S]. ICD defines 
these matrices to be 

L,,= 1 m = (1, . . . . n) 

UmjI(m,j)s.~= Ami- C L,kukj jam 
kcj 

(rn,k)Ed 
(k,i)c,+’ 

(19) 

Li~l(i,m)~~~~ 
[ 

Aim- 1 Lmk”km 
I 

iam. 
mm k<i 

(i,k)cd 
(k.m).se’ 

Here the summation is done over the sparsity pattern 9’. 
There are several possible patterns 9 that one could 

choose. A natural choice for 9’ is to select the coordinates of 
the largest m off-diagonal terms in each column of R. Physi- 
cally, it means that for each level ui, the m largest states to 
which it couples is retained in the sparsity pattern; the 
coupling strength is measured (crudely) by the off-diagonal 
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matrix element. The following is an illustration of the 
sparsity selection with m = 2: 

A= 2 4-2 1 3 

(20) 
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FIG. 2. Location of eigenvalues for preconditioned matrix Q- ‘R in 
the complex plane. 

Note that the regardless of the magnitude of A;,, the 
diagonal is always included in the sparsity pattern. 

The selection of the fastest rates out of a level in the 
sparsity pattern rather than the fastest rates into a level was 
purely an arbitrary decision. It may appear at first glance 
that the preconditioner could be improved if both the rates 
were included in the sparsity pattern. This, however, did 
not proved to be the case. A preconditioner matrix was 
generated by selecting all the nonzero elements of A to be in 
the sparsity pattern. It was found that the convergence rates 
did not change as a result of the better preconditioner. As a 
result, it was concluded that inclusion of both the rates into 
the sparsity pattern would probably not improve the condi- 
tioning. Furthermore, due to the pecularity of the data 
structure used for efficient storage and manipulation of 
sparse matrices, it is very cumbersome to implement a 
scheme in which both the fastest rates into and out of a level 
are included for preconditioning. For these reasons, only 
one set of rates were included in the sparsity pattern. 

4.71 

2 
; 3.14 
h 

1.57 -4 -2 0 2 4 

Log(lhl) 

FIG. 1. Location of eigenvalues for unpreconditioned matrix R in the 
complex plane. 

In order to test the efficacy of this preconditioning 
method, a typical matrix encountered in NLTE problems 
was generated (for a nickel-like MO model, similar to that 
used in Ref. [9]). The generated test R was a 258 x 258 
matrix with a fill factor of 19 %. It had an unpreconditioned 
condition number %?(R’) z 108, where R’ is the rate matrix 
with the singularity removed according to the above 
prescription. By generating the Q using the ICD described 
above with m = 7, the condition number of the precondi- 
tioned matrix dropped to V(Q-‘R’) = 10’. The eigenvalue 
plot is given in Figs. 1 and 2. Although the condition num- 
ber does not fall dramatically, it can be seen from Fig. 2 that 
the eigenvalues are clustered strongly about 1 + Oi [lo]. 

5. SCG AND PBCG METHODS 

As discussed previously, the rate matrices are inherently 
asymmetric due to the details of the atomic processes. 
Symmetrization can be easily accomplished by solving the 
system in (8). However, it should be noted that V(A*A) = 
I%‘(A)/ 2. This squaring of the condition number often makes 
SCG (symmetrized conjugate gradient method) unattrac- 
tive. In the present application, the SCG has no hope of 
converging if A is unpreconditioned. 

A version of the preconditioned SCG algorithm was 
implemented and results were disappointing. The algorithm 
did not converge on the test problem described in Section 4. 
This is not entirely surprising considering that the condition 
number of the symmetrized preconditioned system is in the 
vicinity of 10”. 

As a result of the failure with SCG-type algorithms, 
attention had to turn elsewhere. Two algorithms that have 
shown much success in solving asymmetric systems are the 
biconjugate gradient algorithm (BCG) and the conjugate 
gradient squared algorithms (CGS). The results of these 
algorithms are now discussed. 
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5.1. Preconditioned BCG Algorithm 

Unlike SCG, BCG, does not square the condition num- 
ber as SCG; as a result, faster convergence can be expected. 
The BCG algorithm requires basis vectors in both the 
A-space and its adjoint space AT. Details of this algorithm 
can be found in the literature [ 10, 111. 

The preconditioned BCG algorithm is given by 

cri. = [(UT)-’ .sklT. CL-’ .rkl 
6%. Qk 

xk+I=xk+c16Pk 

r k+I=rk-hA.Pk 

s,+,=s,-&AT’t,q, (21) 

BL = _ [(uT)m’ ‘sk+ 11’ ’ CL-’ ‘rk+ 11 

[(UT)-’ ‘sklT. [L-l .rk] 

Q k+,=U~‘.L~‘.rk+l-fl;Qk 

qk+L=(LT)~“(UT)-l’Sk+l-Bhqk 

with the initial conditions r0 = s0 = p0 = q0 = b - A. x0, 
and where x0 is the initial guess vector. This algorithm 
implements the biconjugate gradient method on the system 

which is ultimately equivalent to (7). 
This algorithm was tried on our test matrix. As it can be 

seen in Fig. 3, the results were quite successful. There are 
two curves shown in Fig. 3. The top curve shows the itera- 
tion plot for an initial state that is away from equilibrium: 
(/(x’=O - x*/~ = 7.0); the bottom curve shows for an initial 
state close to equilibrium l/x”‘- x*112 = 9.6 x 10-l. The 
algorithm converged in about 30 iterations for the former 
and in about 8 in the latter. In transient NLTE calculations, 

10 

in 

-10 - (2) 

I I I I 
0 10 20 30 

Iteration number 

FIG. 3. l/r, /I2 vs iteration number for PBCG algorithm: (1) PBCG 
near equilibrium; (2) PBCG away from equilibrium. 

the initial guess at timestep n + 1 is the solution at timestep 
n, and this guess tends to be closer to the final solution at 
timestep n + 1 on average than our “good initial guess” 
example here. 

The success of the PBCG over the Gaussian elimination 
must be compared in terms of both memory used and 
operation count. In order to efficiently use memory, the 
nonzero matrix elements of the matrices A, L, and U were 
all stored as lists and the coordinates corresponding the 
nonzero matrix elements were stored in a integer array. The 
memory required by the PBCG algorithm as implemented 
requires 

A4 PUCG=jN2+2mN+$+~+IIN, 

wherefN2 is for A stored as a list; where 2mN is for the L 
and the U stored as a list; 11N is for the vectors and the 
remaining for the integer index vectors need for the list. As 
before, f denotes the fill factor. For the test matrix above 
(f = 19 %, m = 7, N = 258), the savings in memory is 70%. 

To compare speed, the number of floating point multi- 
plications and additions required for Gaussian elimination 
is roughly 

N 
jN3 N2 

Gauss ZT3’2’ 

under the assumption that the coding is such that all “zero” 
multiplies and additions are avoided. This optimistic limit is 
not usually obtained in hand-coded Gaussian elimination 
routines, however, it could in principle be obtained on some 
future computer whose architecture permitted fast con- 
current zero checks. The PBCG iterations requires roughly 

N PBCG z k(2f12 + 2mN + 8N) 

additions and multiplications under similar assumptions. 
There is some time required for setup, but we have found 
this to be rather small in comparison with the time spent on 
the iterations. The ratio of operations for the two methods 
is approximately 

~ E N PBCG 

N Gauss N 

for a matrix with a moderately large till factor. In this case 
the full matrix multiples of the PBCG method dominate the 
computation time. For the examples considered above, the 
ratios are 0.7 and 0.2 for the poor and good initial guesses, 
respectively. This estimate is a rather ideal operation count 
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estimate, and in our experience so far, the observed ratio of 
run times tends to favor the PBCG by larger factors. 

5.2. Preconditioned CGS Algorithm 

The CGS algorithm is very similar to the BCG algorithm; 
however, its convergence rate can be expected to be nearly 
twice as that of the BCG algorithm [ 121. The residual error 
at each iteration k for the BCG can be written in the form 

rk = $k(A) rn, 

where dk(A) is a polynomial of order k. This polynomial is 
generated by the BCG algorithm. The CGS algorithm 
generates, not bk(A), but rather, its square d:(A); hence, the 
convergence rate is twice as fast. The preconditioned version 
of the algorithm is given as 

h k+IFekecckyk 

Xk+Fxk+~k(ek+hk) 

rk+, =r,-C+‘i~(ek+h,) 

ek+l= u-’ .L-’ .rk+l +fikhki, 

Pk+I=ek+I+Bk(hk+I+ljkPk) 

(23) 

Y k+,=A.Pk+, 

W -u ‘.L ‘.yk+, k+l- 

T 
% ‘lk+l 

c(k+l= T 
rn . yh + I ’ 

where r0 = b - A . x0. Sonneveld found CGS to be as much 
as 40 % faster than BCG for inverting matrices arising from 

discretization of diffusion type equations. In many of the 
test cases, Sonneveld found CGS to not only be faster. but 
more accurate as well. 

Figure 4 shows the iteration plot for PCGS for the pre- 
sent application. Comparing this with Fig. 3, it is apparent 
that the PCGS algorithms converges 20% faster than the 
PBCG algorithm. Though the speedup is not as large as 
that achieved by Sonneveld [ 121, it is nevertheless a 
significant improvement. In terms of operation counts, the 
PCGS algorithms requires only a trivial number of extra 
operations (n more operations with n being the dimension 
of the matrix); therefore, the 20% speedup in convergence 
almost directly translates to a 20 % computational speedup. 

6. SUMMARY AND CONCLUSIONS 

The preconditioned biconjugate gradient and its variant 
the preconditioned conjugate gradient squared algorithms 
have been applied to the linear system arising from a simple 
backward Euler differencing of the rate equations encoun- 
tered in NLTE simulations, and the iterations have been 
found to be rapidly convergent. 

The matrix arising from the discretization of the rate 
equations is singular, corresponding to the existence of a 
steady state solution. This singularity was removed through 
a reduction of the order of the system by one, and the 
determination of the population of the extra level through 
enforcement of conservation. 

A preconditioning matrix was selected which is simply 
an incomplete LU decomposition of a sparse version of 
the reduced matrix. The time required to decompose the 
preconditioning matrix can be minimized by keeping 
only a small number of matrix elements. We have found 
that a suitable preconditioning matrix can be constructed 
by keeping only the largest matrix elements in each row. 

A preconditioner based on this principle has been 
implemented and has been found to be successful in reduc- 
ing the condition number of the original rate matrix. The 
resulting PBCG and PCGS algorithm has been found to be 
rapidly convergent and is relatively efficient, and provides a 
competitive alternative to Gaussian elimination in solving 
rate equations. 

Based on our success with the PBCG and PCGS algo- 
rithms, we are presently investigating modifications and 
variations of the above algorithms to enhance the computa- 
tional efficiency. The results of the research effort will be 
presented in forthcoming publications. 
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