
JOURNAL OF COMPUTATIONAL PHYSICS 101,360-367 (1992)

The Application of the Preconditioned Biconjugate Gradient
Algorithm to NLTE Rate Matrix Equations

SUMANTH KAUSHIK AND PETER L. HAGELSTEIN

Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Received December 21, 1988; revised February 16, 1990

This paper reports the success of the preconditioned biconjugate
gradient (PBCG) and the conjugate gradient square (CGS) algorithms
in solving the matrix equations resulting from the discretization of
systems of population rate equations which arise in nonequilibrium
kinetics modeling. The success of the PBCG and CGS can be attributed
to two main ideas: First, the singularity of the rate matrix resulting from
population conservation requirement was removed through a reduction
of matrix order so as to improve the condition number of the matrix.
Second, an efficient preconditioner was found to reduce the reduce the
eigenvalue spread of the rate matrix. The preconditioning matrix was
selected on the basis of retaining the largest few rates in each column
of the well conditioned rate matrix. This preconditioner, along with the
reduced rate matrix, enabled the algorithms to converge very rapidly so
as to make them an attractive alternative to standard direct methods.
% 1992 Academic Press, Inc

1. INTRODUCTION

The subject of interest here is the solution of the ODE
system

$R .“, (1)

where u is a column vector of length N and R is a rate
matrix. A solution to this rate equation is required in many
nonlocal thermal equilibria (NLTE) problems. In a typical
NLTE application, the matrix R is composed of the detailed
rates at which particles enter and leave a particular quan-
tum state and the elements of the vector u, ui, represent the
population density of state i.

Although R can be quite dense and randomly structured,
it has an important property that holds true in many physi-
cal systems; namely, it conserves particle number. Conser-
vation of particles means that Cr= i ui = N,, where N, is the
total number of particles at t = 0. It is simple to show that
this condition implies the following important relation:

N
,Fl R,=O, (2)

An analytical solution of (1) is often intractable, par-
ticularly if R is nonlinear. In order to solve (1) one can
either use an ODE package (for example, the GEAR
package), or else for certain applications (such as reactive
flow or transient line transfer problems) one might linearize
R about u and solve the resulting linear problem with
a simple one-step difference equation. For example, if
a modified backward Euler differencing were used, the
resulting linear system to be solved would be given by

(I-dtR,).u,+,=u,. (3)

The subscript n denotes the timestep (u, = u(t,)). The quan-
tity d t is t, + i - t, and the matrix I is the identity matrix. If
the matrix R is nonlinear, then the use of R, in (3) is perhaps
the most convenient one, although clearly not the most
accurate one.

Since R is in general time-dependent, one is faced with the
task of solving the matrix equation (3) at every time step.
This is a very significant computational task, particularly
since the dimension of the matrix R can be very large
(N- 1000). As an example, if one were to solve (3) using
Gaussian elimination, roughly 3 x 10’ multiplication and
addition operations would be needed if R were full (an
operation count of roughly flv3/3 nonzero additions and
multiplications occurs for these matrices with fill fact0r.f).
In addition to the large computational expense, Gaussian
elimination also presents serious storage problems. In typi-
cal NLTE applications, R is somewhat sparse (f = l-20 %).
However, the LU decomposition of I - At A results in L
and U matrices which are not sparse and require the storage
of a full matrix. In many large vector processors, storage is
an important issue, thereby making Gaussian elimination
an unattractive prospect.

An alternative to solution by Gaussian elimination is to
adopt some type of iterative method. Iterative methods are
typically memory-efficient and may require in addition
fewer cycles. Conjugate gradient (CG) methods have
become important in many applications recently, although

0021-9991/92 55.00
Copyright 0 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.

360

THE APPLICATION OF THE PCBG METHOD 361

to our knowledge such methods have not previously been slower convergence rates. The spectral condition number
successfully applied to the linear system of interest here. If a measures this spread and is defined to be
class of efficient iterative methods could be developed for
NLTE problems, then they would present a very attractive
alternative to Gaussian elimination. In this paper we V(A)= (IA((2 ,,A-‘12=F,

m1n
present one such iterative method that “beats” Gaussian
elimination. In particular, the preconditioned biconjugate
gradient (PBCG) algorithm is shown to be a much faster
and more efficient alternative to Gaussian elimination in
inverting the large matrices that arise in NLTE modelling.

This paper is organized in the following manner. First,
the issues relevant to the CG method is briefly reviewed in
the context of the present application. This leads to a discus-
sion of the origin and consequences of numerical ill-condi-
tioning as it pertains to the solution of rate equations;
following which, a simple method is presented to avoid
ill-conditioned systems. Once these important issues
relating to the CG method have been resolved, the results
of the present effort, in particular the PBCG and PCGS
algorithms, are discussed.

where urnax and rrmin are the largest and smallest singular
values of the matrix. The largest and smallest singular
values correspond to the largest and smallest nonzero eigen-
values of the matrix. Since microscopic processes occur at
widely ranging time scales, rate matrices with large condi-
tion numbers are very common. In typical NLTE problems,
%(A) can be as high as 10”. For matrices with such a broad
eigenvalue spectrum, the standard CG-type algorithms fail.

However, the above problems are not insurmountable.
For example, condition number can be reduced by pre-
conditioning A [6]. This involves the selection of a matrix
Q such that

Q-‘-ANNI,

2. CONJUGATE GRADIENT METHODS where Q is chosen so that its inverse is easily computable.

During the last decade, the preconditioned conjugate
This Q is then used to solve the preconditioned system

gradient algorithm or variants thereof have become favored
iterative methods to solve large sparse linear systems of the

Q-‘.A.x=Q--‘.b. (7)

form

A.x=b.

In the present application, A is defined to be

This method is essentially what we have used for the NLTE
(4) problem.

An alternate route to developing an iterative method is
to symmetrize the initial linear system (4), and then to
precondition (or precondition and then symmetrize) as

AEI--dtR. (5) (8)

Although in the strict sense the CG method is a direct where AT . A is now a symmetric matrix. This approach
method, it has become referred to as an iterative involves squaring the condition number of the matrix; as a
method [1, 31. result, it is more difficult to precondition.

CG-type methods hitherto have not been used for the pre-
sent application. There are difficulties associated with the
application of conjugate gradient methods to systems which 3. FINITE DIFFERENCING

are both nonsymmetric and which have a large condition ILL-CONDITIONED SYSTEMS

number. For example, the CG method and the biconjugate
gradient method can be viewed as a algorithms which

3.1. Condition Numbers

construct a polynomial lit to the inverse of the eigenvalue In many NLTE applications (e.g. stellar plasmas), the
spectrum [4, 51: time evolution of the population vector is not of primary

interest; instead, the desired information in many of these

i= i fk(12ilk. (6)
applications is the steady state distribution. For these

1 k=l
applications, it would be very useful to set At = co in (3) and
solve directly for the steady state.

Unfortunately, this is very difficult if the system is
A large spread in the eigenvalue spectrum correspondingly differenced as (3). The reason is rooted in the singularity
requires many terms in the polynomial expansion; hence, of the rate matrix A. The rate matrix is always singular if it

362 KAUSHIK AND HAGELSTEIh

conserves population. This can easily be seen in (2) which
makes one of the N rows dependent on the remaining N - 1
rows. As a result of this singularity, CG methods cannot
converge effectively. But it is important to realize that this
singularity has a physical interpretation. The eigenvector
corresponding to the zero eigenvalue corresponds to the
steady state solution when 8 u/at = 0, u # 0.

It may by argued, however, that even though R is
singular, A, as a result of the identity matrix, is not singular.
This is indeed true, but it is shown that the loss of
singularity is due to the numerics. As a consequence, it is
shown that the condition number is highly dependent on the
parameters of the numerical scheme. In particular, it is seen
that the matrix system (3) is singular if At = x. This
behavior is clearly undesirable, since it implies that steady
state solutions are not easily computable with the same dif-
ferencing scheme. In the subsequent discussion we use the
term singular value and eigenvalue interchangably since the
matrix corresponding to the finite differenced system is no
longer singular; hence, the singular value is simply the
square root of the magnitude of the eigenvalue.

It should be noted that the above problems are not
unique to the differencing scheme in (3). A standard practice
by which the singularity is removed is to replace the last row
by a conservation vector. Pictorially, this matrix looks like

B=

1 -At R,,, -At R,., ..’ ...

-At R,,, 1 -AtRz.l,.

(9)

Although A and B appear to be very different from each
another, they nevertheless have very similar eigenvalue
spectrums. The eigenvalue spectrum of A is related to
the eigenvalue spectrum of R by the simple relation
2, = 1 - ,u~ At, where ,u;s are the eigenvalues of R. Since
coin = 0 for R, the condition number for A is simply

%?(A) = 1 - ~rnax At
1 -Prnin At

= 1 - pmax At, (10)

where all eigenvalues pi have a negative real parts. This con-
dition number has a disagreeable behaviour in the limit of
large time steps; as At -+ co, Q?(A) --) co. In this sense, A is
ill-conditioned.

The exact eigenvalue spectrum of B is quite difficult to
calculate. Intuitively, it would seem that there should be
some relationship between the eigenvalue spectrum of B and

A. To understand this, several matrices of the form of A anti

B were generated and their respective condition number\
were examined. It was found that the condition numbers
were virtually identical in the limit of large time steps, One
possible reason for this behaviour is the following. ,45
At + X, the coupling between the top rows and the bottom
row becomes very small. In the limit of total decoupling.
only the diagonal element is important; hence. the lowest
eigenvalue is i.,,,(B) = 1. Similarly, the largest eigenvalucs
do not change appreciably from A. The physical process
responsible for the large eigenvalues (for typical non-LTE
plasmas) are collisions. Since, these processes are relatively
insensitive to the changes to any single quantum state, the
perturbation of the one the states (e.g. in (9), the lowest
row) should not really affect these large eigenvalues. So
based on these arguments, in the limit At + Y-, it can be
seen that %(B)*%(A).

In the limit that At becomes very large, the condition
number of A and B approaches - klrnaX At, which is linearly
divergent in At. If the lowest eigenvalue i,,, (which
corresponds to the steady state solution) could be removed
in some way, then the resulting system would have a condi-
tion number

Cg(A’) v.., !!!!%
fl’

(11)
m,n

in the limit of large At, where A’ is the matrix corresponding
to the modified system where %mln has been removed. The
eigenvalue /4&in is the eigenvalue with the smallest
magnitude of R other than the zero eigenvalue corre-
sponding to the steady state solution.

This condition number (@?(A’)) is due to the detailed
physics and atomic rates which occur in the problem, and is
not related to either the time step or differencing scheme. It
is, in a sense, a “physical” condition number for the system.
Although condition numbers smaller than this may occur, it
can be hoped that a numerical scheme can be devised that
would do no worse than this under any circumstances (the
schemes described in this section can have condition
numbers which are arbitrarily large). In the next section
we discuss a scheme involving a minor modification to (3)
which has this desirable property.

We may summarize the discussion of the section as
follows: The matrix R is singular and the zero eigen-
value corresponds to the steady state solutions of the
system. Although the numerical scheme (3) removes this
singularity, the condition number of the discretized system
is still much larger than the physical condition number.
Although the ill-conditioning is not a serious issue for direct
inversion, it becomes a serious issue for iterative methods
since the convergence properties are directly related to the
condition number.

THE APPLICATION OF THE PCBG METHOD 363

3.2. Reduction of Dimension

From the previous section, it is clear that the goal is to
somehow eliminate &,,,, = 1 eigenvalue. This can be accom-
plished by taking advantage of conservation. Since the
system is conservative, only N- 1 equations need to be
solved explicitly at the n + 1 th timestep. The population of
the Nth level can be determined through

N-l

U N=No- 1 u,. (12)
,=I

The use of backward Euler differencing on the rate equa-
tions for the other N - 1 levels leads to a set of linear equa-
tions with an associated matrix that is well conditioned for
large time steps.

The differential equation describing the level population
of state i can be written

2zjtl ROU~=~~’ Rqui+RiNuN. (13)
/=I

This population of level N can be eliminated by using the
conservation condition to yield

~=N&Ri,-RiJuj+R;NNO. (14)
j=l

This implies the system of rate equations

au
-=R’.u+f, at

where R’ is a nonsingular (N - 1) x (N - 1) matrix. The
elements of R’ and f are Rb = R,- RiN and fi = R,No,
respectively. Since the matrix R’ is nonsingular, the steady
state population can be found by solving R’ . u = - f.

Finite differencing (15) yields the linear system

(I-dtR;).u,+,=u,+dtf,. (16)

This equation resembles (3); however, the matrix

A’=T-AtR’ (17)

has a reduced condition number

%?(A’) = 1 -At ~max
1 -At ~L6in (18)

following the discussion of the last section. In the best case
(At =O), %(A’) = 1 and in the worst case (At = a),
@(A’) = ~~rnaxl~rmn~ One cannot do better than this because

the condition number cannot be made smaller (without
preconditiong) than the spread in eigenvalues due to the
physical processes.

In this sense, the task has been accomplished; by reducing
the dimension of A and solving the A’ system, the condition
number remains finite in the large At limit. For situations
where I At pmln I is less than unity little improvement is
expected. For lAt ~L,in 1 larger than unity, the reduced
system can have a substantially smaller condition number.

The method described in this section has the additional
feature that it is algebraically conservative. Gaussian
elimination of the system (3) is known to lead to moderate
to large errors in total population, and the usual practice in
NLTE calculations is to replace one of the rate equations by
the conservation condition as described in the previous
section. This modified system gives dramatic improvement
in the conservation of population, as is also well known.
The reduced system discussed in this section is operationally
equivalent in that conservation is guaranteed algebraically
on each timestep.

4. PRECONDITIONING

Although A’ is not singular for large At, the condition
number can be nevertheless be quite large. Under these con-
ditions, it is necessary to precondition A’ in order for a con-
jugate gradient method to be effective. To simplify notation,
the prime on A’ is dropped for the remainder of the paper.

As mentioned before, preconditioning involves the
determination of an easily invertible matrix Q, where
%(Q - ‘A) < %‘(A). One class of Q’s that are easily invertible
are those that are of the form Q = LU, where L and U
are the lower diagonal and upper diagonal matrices,
respectively. A simple way to generate L and U is to use the
incomplete Crout decomposition (ICD) [S]. ICD defines
these matrices to be

L,,= 1 m = (1, n)

UmjI(m,j)s.~= Ami- C L,kukj jam
kcj

(rn,k)Ed
(k,i)c,+’

(19)

Li~l(i,m)~~~~
[

Aim- 1 Lmk”km
I

iam.
mm k<i

(i,k)cd
(k.m).se’

Here the summation is done over the sparsity pattern 9’.
There are several possible patterns 9 that one could

choose. A natural choice for 9’ is to select the coordinates of
the largest m off-diagonal terms in each column of R. Physi-
cally, it means that for each level ui, the m largest states to
which it couples is retained in the sparsity pattern; the
coupling strength is measured (crudely) by the off-diagonal

364 KAUSHIK AND HAGELSTEIN

matrix element. The following is an illustration of the
sparsity selection with m = 2:

A= 2 4-2 1 3

(20)

1.57.
.

. .

. 8

22
0..

l * .

~0.00..

h

. .“. 1 a...- :

0..

t ‘.
.

l 8

. l

.

-1.57
-6 -4 -2 -0 2

Log(lXI)

FIG. 2. Location of eigenvalues for preconditioned matrix Q- ‘R in
the complex plane.

Note that the regardless of the magnitude of A;,, the
diagonal is always included in the sparsity pattern.

The selection of the fastest rates out of a level in the
sparsity pattern rather than the fastest rates into a level was
purely an arbitrary decision. It may appear at first glance
that the preconditioner could be improved if both the rates
were included in the sparsity pattern. This, however, did
not proved to be the case. A preconditioner matrix was
generated by selecting all the nonzero elements of A to be in
the sparsity pattern. It was found that the convergence rates
did not change as a result of the better preconditioner. As a
result, it was concluded that inclusion of both the rates into
the sparsity pattern would probably not improve the condi-
tioning. Furthermore, due to the pecularity of the data
structure used for efficient storage and manipulation of
sparse matrices, it is very cumbersome to implement a
scheme in which both the fastest rates into and out of a level
are included for preconditioning. For these reasons, only
one set of rates were included in the sparsity pattern.

4.71

2
; 3.14
h

1.57 -4 -2 0 2 4

Log(lhl)

FIG. 1. Location of eigenvalues for unpreconditioned matrix R in the
complex plane.

In order to test the efficacy of this preconditioning
method, a typical matrix encountered in NLTE problems
was generated (for a nickel-like MO model, similar to that
used in Ref. [9]). The generated test R was a 258 x 258
matrix with a fill factor of 19 %. It had an unpreconditioned
condition number %?(R’) z 108, where R’ is the rate matrix
with the singularity removed according to the above
prescription. By generating the Q using the ICD described
above with m = 7, the condition number of the precondi-
tioned matrix dropped to V(Q-‘R’) = 10’. The eigenvalue
plot is given in Figs. 1 and 2. Although the condition num-
ber does not fall dramatically, it can be seen from Fig. 2 that
the eigenvalues are clustered strongly about 1 + Oi [lo].

5. SCG AND PBCG METHODS

As discussed previously, the rate matrices are inherently
asymmetric due to the details of the atomic processes.
Symmetrization can be easily accomplished by solving the
system in (8). However, it should be noted that V(A*A) =
I%‘(A)/ 2. This squaring of the condition number often makes
SCG (symmetrized conjugate gradient method) unattrac-
tive. In the present application, the SCG has no hope of
converging if A is unpreconditioned.

A version of the preconditioned SCG algorithm was
implemented and results were disappointing. The algorithm
did not converge on the test problem described in Section 4.
This is not entirely surprising considering that the condition
number of the symmetrized preconditioned system is in the
vicinity of 10”.

As a result of the failure with SCG-type algorithms,
attention had to turn elsewhere. Two algorithms that have
shown much success in solving asymmetric systems are the
biconjugate gradient algorithm (BCG) and the conjugate
gradient squared algorithms (CGS). The results of these
algorithms are now discussed.

THE APPLICATION OF THE PCBG METHOD 365

5.1. Preconditioned BCG Algorithm

Unlike SCG, BCG, does not square the condition num-
ber as SCG; as a result, faster convergence can be expected.
The BCG algorithm requires basis vectors in both the
A-space and its adjoint space AT. Details of this algorithm
can be found in the literature [10, 111.

The preconditioned BCG algorithm is given by

cri. = [(UT)-’ .sklT. CL-’ .rkl
6%. Qk

xk+I=xk+c16Pk

r k+I=rk-hA.Pk

s,+,=s,-&AT’t,q, (21)

BL = _ [(uT)m’ ‘sk+ 11’ ’ CL-’ ‘rk+ 11

[(UT)-’ ‘sklT. [L-l .rk]

Q k+,=U~‘.L~‘.rk+l-fl;Qk

qk+L=(LT)~“(UT)-l’Sk+l-Bhqk

with the initial conditions r0 = s0 = p0 = q0 = b - A. x0,
and where x0 is the initial guess vector. This algorithm
implements the biconjugate gradient method on the system

which is ultimately equivalent to (7).
This algorithm was tried on our test matrix. As it can be

seen in Fig. 3, the results were quite successful. There are
two curves shown in Fig. 3. The top curve shows the itera-
tion plot for an initial state that is away from equilibrium:
(/(x’=O - x*/~ = 7.0); the bottom curve shows for an initial
state close to equilibrium l/x”‘- x*112 = 9.6 x 10-l. The
algorithm converged in about 30 iterations for the former
and in about 8 in the latter. In transient NLTE calculations,

10

in

-10 - (2)

I I I I
0 10 20 30

Iteration number

FIG. 3. l/r, /I2 vs iteration number for PBCG algorithm: (1) PBCG
near equilibrium; (2) PBCG away from equilibrium.

the initial guess at timestep n + 1 is the solution at timestep
n, and this guess tends to be closer to the final solution at
timestep n + 1 on average than our “good initial guess”
example here.

The success of the PBCG over the Gaussian elimination
must be compared in terms of both memory used and
operation count. In order to efficiently use memory, the
nonzero matrix elements of the matrices A, L, and U were
all stored as lists and the coordinates corresponding the
nonzero matrix elements were stored in a integer array. The
memory required by the PBCG algorithm as implemented
requires

A4 PUCG=jN2+2mN+$+~+IIN,

wherefN2 is for A stored as a list; where 2mN is for the L
and the U stored as a list; 11N is for the vectors and the
remaining for the integer index vectors need for the list. As
before, f denotes the fill factor. For the test matrix above
(f = 19 %, m = 7, N = 258), the savings in memory is 70%.

To compare speed, the number of floating point multi-
plications and additions required for Gaussian elimination
is roughly

N
jN3 N2

Gauss ZT3’2’

under the assumption that the coding is such that all “zero”
multiplies and additions are avoided. This optimistic limit is
not usually obtained in hand-coded Gaussian elimination
routines, however, it could in principle be obtained on some
future computer whose architecture permitted fast con-
current zero checks. The PBCG iterations requires roughly

N PBCG z k(2f12 + 2mN + 8N)

additions and multiplications under similar assumptions.
There is some time required for setup, but we have found
this to be rather small in comparison with the time spent on
the iterations. The ratio of operations for the two methods
is approximately

~ E N PBCG

N Gauss N

for a matrix with a moderately large till factor. In this case
the full matrix multiples of the PBCG method dominate the
computation time. For the examples considered above, the
ratios are 0.7 and 0.2 for the poor and good initial guesses,
respectively. This estimate is a rather ideal operation count

366 KAUSHIK AND HAGELSTEIN

estimate, and in our experience so far, the observed ratio of
run times tends to favor the PBCG by larger factors.

5.2. Preconditioned CGS Algorithm

The CGS algorithm is very similar to the BCG algorithm;
however, its convergence rate can be expected to be nearly
twice as that of the BCG algorithm [121. The residual error
at each iteration k for the BCG can be written in the form

rk = $k(A) rn,

where dk(A) is a polynomial of order k. This polynomial is
generated by the BCG algorithm. The CGS algorithm
generates, not bk(A), but rather, its square d:(A); hence, the
convergence rate is twice as fast. The preconditioned version
of the algorithm is given as

h k+IFekecckyk

Xk+Fxk+~k(ek+hk)

rk+, =r,-C+‘i~(ek+h,)

ek+l= u-’ .L-’ .rk+l +fikhki,

Pk+I=ek+I+Bk(hk+I+ljkPk)

(23)

Y k+,=A.Pk+,

W -u ‘.L ‘.yk+, k+l-

T
% ‘lk+l

c(k+l= T
rn . yh + I ’

where r0 = b - A . x0. Sonneveld found CGS to be as much
as 40 % faster than BCG for inverting matrices arising from

discretization of diffusion type equations. In many of the
test cases, Sonneveld found CGS to not only be faster. but
more accurate as well.

Figure 4 shows the iteration plot for PCGS for the pre-
sent application. Comparing this with Fig. 3, it is apparent
that the PCGS algorithms converges 20% faster than the
PBCG algorithm. Though the speedup is not as large as
that achieved by Sonneveld [121, it is nevertheless a
significant improvement. In terms of operation counts, the
PCGS algorithms requires only a trivial number of extra
operations (n more operations with n being the dimension
of the matrix); therefore, the 20% speedup in convergence
almost directly translates to a 20 % computational speedup.

6. SUMMARY AND CONCLUSIONS

The preconditioned biconjugate gradient and its variant
the preconditioned conjugate gradient squared algorithms
have been applied to the linear system arising from a simple
backward Euler differencing of the rate equations encoun-
tered in NLTE simulations, and the iterations have been
found to be rapidly convergent.

The matrix arising from the discretization of the rate
equations is singular, corresponding to the existence of a
steady state solution. This singularity was removed through
a reduction of the order of the system by one, and the
determination of the population of the extra level through
enforcement of conservation.

A preconditioning matrix was selected which is simply
an incomplete LU decomposition of a sparse version of
the reduced matrix. The time required to decompose the
preconditioning matrix can be minimized by keeping
only a small number of matrix elements. We have found
that a suitable preconditioning matrix can be constructed
by keeping only the largest matrix elements in each row.

A preconditioner based on this principle has been
implemented and has been found to be successful in reduc-
ing the condition number of the original rate matrix. The
resulting PBCG and PCGS algorithm has been found to be
rapidly convergent and is relatively efficient, and provides a
competitive alternative to Gaussian elimination in solving
rate equations.

Based on our success with the PBCG and PCGS algo-
rithms, we are presently investigating modifications and
variations of the above algorithms to enhance the computa-
tional efficiency. The results of the research effort will be
presented in forthcoming publications.

ACKNOWLEDGMENTS

iteration Number The authors acknowledge support for this work from the Lawrence
Livermore National Laboratory under Contract B048704. The authors

FIG. 4. llrli I/* vs iteration number for PCGS algorithm: (1) PCGS thank the reviewers for their perceptive and useful comments. In particular,
near equilibrium; (2) PCGS away from equilibrium. we thank one of the reviewers for suggesting the use of the CGS algorithm.

THE APPLICATION OF THE PCBG METHOD 367

REFERENCES

1. J. K. Reid, in Proceedings of the Conference on Large Sparse Syslems
of Linear Equations, edited by J. K. Reid (Academic Press, New York,
1971).

2. D. Kershaw, J. Compuf. Phys. 26,43 (1978).

3. M. R. Hestenes and E. Stieffel, J. Res. Nut. Bur. Stand. (US) 49, 409
(1952).

4. David G. Luenberger. Linear und Nonlinear Programming (Addison-
Wesley, MA, 1984).

5. 0. Axelsson. in Sparse Marrix Techniques, edited by V. A. Barker,

Copenhagen 1976, Lecture Notes in Mathematics, Vol. 571 (Springer-
Verlag, Berlin, 1977).

6. J. A. Meijerink and H. A. van der Vorst, Math. Comput. 31, 148 (1977).

7. Ben Noble, Applied Linear Algebra (Prentice-Hall, New Jersey, 1969).

8. H. A. van der Vorst, J. Comput. Ph-vs. 44, 1 (1981).

9. P. Hagelstein, “Something New, Something Old,” Proceedings of the
OSA conference on Short Wavelength Coherent Radiation, Cape Cod,
September 1988.

10. Z. Mikic and E. C. Morse, J. Comput. P~Jx. 61, 154 (1985).

11. T. K. Sarkar, J. Elecfromagn. Wuoes Appi. 1, 343 (1987).

12. Peter Sonneveld, SIAM J. Sci. Star. Comput. 10, 36 (1989).

